Top.Mail.Ru

Как подготовить данные для self-service аналитики и data science с помощью корпоративных инструментов на базе ИИ

Современные организации возлагают большие надежды на использование данных для принятия взвешенных решений, которые помогут получить конкурентное преимущество. При этом все сложнее становится извлекать ценность из данных, многообразие и сложность которых постоянно растут. Кроме того, все чаще достоверные данные нужны каждому пользователю в компании, чтобы принимать стратегические решения, повышать операционную эффективность, разрабатывать модели машинного обучения и сотрудничать с коллегами в рамках бизнес-процессов. Для достижения этих целей компании обычно вкладывают много времени и денег в объединение всех данных в облачном хранилище или озере данных, считая, что это самое подходящее решение. Вскоре они понимают, что, несмотря на все усилия, данные в облаке хранятся хаотично, и очень сложно находить, извлекать и использовать их для современного анализа.

Учитывая эти тренды, очень важно организовать правильную подготовку данных для self-service аналитики и data science.

Что такое подготовка данных и какие сложности она вызывает?

Для подготовки данных к анализу и машинному обучению нужно выполнить несколько трудоемких задач, включая извлечение, очистку, нормализацию и загрузку данных, а также оркестрацию рабочих процессов ETL в большом масштабе. После надежного перемещения данных в облачное хранилище или озеро, аналитики и data scientist должны еще очистить и нормализовать их, чтобы понять контекст.

Сейчас они работают с небольшими пакетами данных в Excel или Jupyter Notebooks, которые не могут оперировать большими наборами данных, применяться в практических целях или предоставлять достоверные метаданные для корпоративных процессов. Подготовка наборов данных занимает от нескольких недель до нескольких месяцев. В результате заказчики 80% времени тратят на подготовку данных вместо того, чтобы анализировать их и извлекать из них пользу.

Как обратить правило 80/20 в свою пользу?

Многие компании по-прежнему неэффективно подходят к обработке данных. 80% времени и сил аналитиков данных и data scientist уходит на поиск и подготовку данных, и только 20% — на их анализ. Более того, из-за быстрого роста объемов неструктурированных данных специалисты DataOps тратят больше времени на удаление, очистку и упорядочивание данных, чтобы выявить в них ошибки, нарушения согласованности и аномалии.

При этом компании все чаще стараются принимать решения на основе данных. Данные должны быть качественными и достоверными, а значит процесс их подготовки необходимо стандартизировать и оптимизировать. Бизнес-пользователям некогда ждать данных от ИТ-отдела — им нужны функции self-service для подготовки данных, чтобы быстрее принимать решения.

Подготовку можно ускорить с помощью гибкого итеративного и коллективного подхода по принципу self-service. Современный подход self-service при подготовке данных поможет компаниям обратить правило 80/20 в свою пользу. ИТ-отделы могут предлагать возможности self-service для работы с данными, при этом помогая аналитикам находить нужные данных, подготавливать их, применять правила контроля качества и сотрудничать с коллегами, чтобы в итоге предоставить ценность для бизнеса за гораздо более короткий срок.

Варианты применения подготовки данных в современной организации

Существует два основных варианта применения корпоративной подготовки данных:

  • Подготовка данных для повышения эффективности аналитики и data science.
    Корпоративное решение для подготовки данных на базе ИИ, интегрированное с корпоративным каталогом данных, позволяет повысить продуктивность и эффективность работы data scientist, которые пытаются найти и подготовить данные вручную с помощью инструментов с открытым кодом. Большую часть времени data scientist ищут и готовят данные вместо того, чтобы выполнять собственно задачи data science. Благодаря интегрированной подготовке и каталогизации данных специалисты могут работать с большим наборами структурированных и неструктурированных данных, хранящихся в облачном озере. Это позволяет ускорить разработку моделей и обнаружить скрытые поначалу полезные фрагменты данных для прогнозной и прескриптивной аналитики.
  • Подготовка данных для self-service аналитики в облачных озерах данных.
    Облачные озера данных фактически стали основной платформой предоставления данных для расширенных аналитических рабочих нагрузок. При этом озеро очень быстро превращается в болото, если организация не использует подходящие технологии для обработки данных и извлечения из них ценности. Корпоративная подготовка данных позволяет повысить качество содержимого облачного озера после приема данных, а также курировать данные, чтобы у пользователей был достоверный источник информации для self-service аналитики.

Как помогут решения от Informatica?

Informatica Enterprise Data Preparation позволяет data scientist, аналитикам данных и опытным пользователям подготавливать данные в облачном озере без написания кода для поддержки self-service аналитики, искусственного интеллекта и машинного обучения. Восемь преимуществ Informatica Enterprise Data Prep для эффективного использования данных:

  • Больше достоверности благодаря повышению качества данных. Informatica Enterprise Data Preparation применяет интеллектуальные функции и автоматизацию, чтобы повысить качество данных и сократить объем работы, выполняемой вручную. Это решение позволяет стандартизировать контроль качества данных в организации, а также проверять и обогащать данные заказчиков, например адреса электронной почты, почтовые адреса и номера телефонов.
  • Создание корпоративного каталога данных. Informatica Enterprise Data Catalog помогает аналитикам и data scientist понять, какие данные у них есть, как они определены, где находятся, откуда поступили (линедж), как используются и как связаны с другими данными. С помощью ИИ, машинного обучения и автоматизации в движке ИИ CLAIRE, Informatica Enterprise Data Catalog помогает организациям курировать данные для конвейеров, показывая, какие наборы данных доступны в том или ином контексте. Это позволяет пользователям быстрее находить и понимать достоверные, актуальные и доступные данные.
  • Повышение гибкости и эффективности работы пользователей. С решением Informatica Enterprise Data Preparation ИТ-отдел может предложить функции self-service для работы с данными и помочь аналитикам находить подходящие данные, подготавливать их, применять правила контроля качества, сотрудничать друг с другом и предоставлять ценность для бизнеса в гораздо более короткие сроки.
  • Улучшение аналитики и data science. Informatica Enterprise Data Preparation обеспечивает интеллектуальную и автоматизированную подготовку данных. Это помогает data scientist и аналитикам работать продуктивнее и сосредоточиться на задачах, связанных с анализом, ИИ и машинным обучением, чтобы достичь желаемых бизнес-результатов. Благодаря этому решению data scientist могут не обладать обширными навыками программирования, поэтому организациям будет проще нанимать специалистов.
  • Повышение ценности облачных озер данных. Informatica Enterprise Data Preparation позволяет быстрее и эффективнее извлекать практическую ценность из данных в облачных озерах. Решение помогает преобразовывать, очищать, подготавливать и обогащать необработанные данные при поступлении в озеро данных, чтобы эти данные можно было использовать для расширенной аналитики, ИИ и машинного обучения. Informatica Enterprise Data Catalog помечает тегами информацию, описывающую линедж данных. Каталогизация больших объемов данных повышает их согласованность — этого невозможно добиться с помощью разрозненных инструментов self-service.
  • Расширение практического применения данных в DataOps. Масштабируемые решения для подготовки данных на базе ИИ от Informatica помогают достичь следующих целей при использовании подхода DataOps:
    • Непрерывная интеграция и совместная работа для быстрого поиска нужных данных.
    • Непрерывная доставка и простое сопоставление управляемых и достоверных наборов данных для определения бизнес-терминов, чтобы повысить скорость и качество конвейеров данных.
    • Непрерывная доставка наборов данных для конвейеров.
  • Целостное представление для оптимизации подготовки данных. Informatica Enterprise Data Preparation позволяет организациям получить комплексное и целостное представление о рабочих нагрузках, чтобы выявить распространенные проблемы и использовать инструменты ИИ и автоматизации для замены лишних операций, выполняемых вручную.
  • Улучшение процессов управления качеством данных. С помощью решений Informatica Enterprise Data Preparation, Data Catalog, Data Quality и Axon Data Governance заказчики могут наладить процессы управления качеством при поступлении данных в облачное озеро данных. Интеграция каталога данных с CLAIRE, первым в отрасли движком ИИ на основе метаданных, позволяет повысить масштабируемость и точность для управления данными в облачных озерах и хранилищах данных.

Решение Informatica Enterprise Data Preparation второй раз попадает в Constellation ShortList в категории Self-Service Data Prep. В последнем отчете Constellation ShortList решение Informatica Enterprise Data Preparation названо одним из лучших продуктов в категории Self-Service Data Preparation (self-service подготовка данных). Отчет Constellation ShortList составляется на основе опросов пользователей, обсуждений с партнерами, отзывов заказчиков, проектов по выбору вендоров, доли на рынке и внутренних исследований. Загрузите аналитический отчет, чтобы узнать больше.



Поделиться
{{ responsive_img( url='/../../static/upload/news/detail-image.jpg',lazy=true, img_attrs={ class: "img-fluid lazy" }, formats=['webp'] ) }}

Рассылка новостей

    Продолжая пользоваться сайтом, вы даёте Согласие на автоматический сбор и анализ ваших данных, необходимых для работы сайта и его улучшения, использование файлов cookie.